Shape-Based Myocardial Contractility Analysis Using Multivariate Outlier Detection
نویسندگان
چکیده
This paper presents a new approach to regional myocardial contractility analysis based on inter-landmark motion (ILM) vectors and multivariate outlier detection. The proposed spatio-temporal representation is used to describe the coupled changes occurring at pairs of regions of the left ventricle, thus enabling the detection of geometrical and dynamic inconsistencies. Multivariate tolerance regions are derived from training samples to describe the variability within the normal population using the ILM vectors. For new left ventricular datasets, outlier detection enables the localization of extreme ILM observations and the corresponding myocardial abnormalities. The framework is validated on a relatively large sample of 50 subjects and the results show promise in localization and visualization of regional left ventricular dysfunctions.
منابع مشابه
Identification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملNonparametric Depth-Based Multivariate Outlier Identifiers, and Robustness Properties
In extending univariate outlier detection methods to higher dimension, various special issues arise, such as limitations of visualization methods, inadequacy of marginal methods, lack of a natural order, limited scope of parametric modeling, and restriction to ellipsoidal contours when using Mahalanobis distance methods. Here we pass beyond these limitations via an approach based on depth funct...
متن کاملTotal Variation Depth for Functional Data
There has been extensive work on data depth-based methods for robust multivariate data analysis. Recent developments have moved to infinite-dimensional objects such as functional data. In this work, we propose a new notion of depth, the total variation depth, for functional data. As a measure of depth, its properties are studied theoretically, and the associated outlier detection performance is...
متن کاملNonparametric Depth-Based Multivariate Outlier Identifiers, and Masking Robustness Properties
In extending univariate outlier detection methods to higher dimension, various issues arise: limited visualization methods, inadequacy of marginal methods, lack of a natural order, limited parametric modeling, and, when using Mahalanobis distance, restriction to ellipsoidal contours. To address and overcome such limitations, we introduce nonparametric multivariate outlier identifiers based on m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 10 Pt 2 شماره
صفحات -
تاریخ انتشار 2007